

National Defense ISAC
How to Protect Cloud-native Applications

April 3, 2023

Authors:
Raul Barreras
Terence Ho
Levi Lyons
Waldemar Pabon
Andrew Zuehlke

Reviewers:
Allan Jacob
Will Jimenez
Renee Stegman

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 2

About the Authors

Dr. Waldemar Pabon, ND-ISAC Lead & Senior Contributor

Dr. Waldemar Pabon is a Cyber Security Architect with over 28 years of experience in software

engineering. Dr. Pabon leads the Application Security Working Group, Software Security

Automation, and the COTS Software Assessments Subgroups at the ND-ISAC. Under his

leadership, the Software Security Automation Working Group has published four white papers.

The papers provide ND-ISAC members and the industry with a roadmap on how to adopt

application security best practices while leveraging automation as a catalyst to achieve

efficiencies. Dr. Pabon has a Doctor of Science in Cybersecurity degree from Capitol Technology

University.

Raul Barreras, ND-ISAC Contributor

Raul is an Information Security Professional with more than 20 years of experience. His multiple

roles throughout his career include information security officer, systems administrator,

developer, teacher, and occasional pen tester. In recent years, Raul has had the opportunity to

use the accumulated experience in a new role: application security. This role has allowed him to

discover how much he enjoys being a developer advocate and how fun and useful it is to build a

community of security champions while improving the quality of the organization's software.

This is Raul’s second opportunity to contribute to application security papers at the ND-ISAC.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 3

Terence Ho, ND-ISAC Contributor

Terence Ho is a Cloud Application Cybersecurity Specialist with 4 years of experience in the

Information Security field with a primary focus on developing automation, integrating security

tooling, testing, and standardizing innovative solutions to enhance the security of applications

in the Enterprise. He joined ND-ISAC in December 2022 and became a member of the

Application Security working group to learn more from the Information Security community and

contribute his expertise to the group. Terence graduated from the University of Washington

with a Bachelor’s Degree in Computer Science and Software Engineering with a focus on

Information Assurance and Cybersecurity.

Levi Lyons, ND-ISAC Contributor

Levi serves as the lead engineer of Attack Surface Management which comprises of web

application scanning, vulnerability scanning, external attack surface monitoring, and security

assessment orchestration. Levi started as a system administrator before moving to the security

team where he took on the role of vulnerability scanner administrator and eventually internal

subject matter expert on vulnerability management. Levi Lyons graduated in 2014 with a

Bachelor of Science Degree in Information Systems and Cybersecurity.

Andrew Zuehlke, ND-ISAC Senior Contributor

Andrew Zuehlke is a Cyber Security Architect with six years of experience in the information

security field. Andrew graduated from Appalachian State University in 2017 with a Bachelor of

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 4

Science Degree in Computer Science and Computational Mathematics. In his former role,

Andrew served as the lead administrator of SIEM and EDR solutions. In early 2020, Andrew

moved to his current role as Cyber Security Architect, primarily supporting Research &

Development and Information Technology. Since joining the ND-ISAC in December 2020,

Andrew has become a member of the Application Security working group as well as the Cloud

Security and Architecture Working Group. Andrew has co-authored multiple white papers with

ND-ISAC’s Application Security Working Group.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 5

Executive Summary

Cloud-native applications encompass a new approach on how software is built, deployed,

and managed in cloud computing environments (Amazon, n.d.). Cloud-native applications

provide scalability and efficiency to meet customer demands. With the increased adoption

of cloud technologies, many organizations have begun moving applications to the cloud and

creating cloud-native applications. While Software Development Lifecycle (SDLC) security

controls can help with securing cloud applications, these controls neglect the infrastructure

layer of cloud-native applications and the unique risks presented by applications deployed

in the cloud. The cloud architecture for applications, Open Worldwide Application Security

Project (OWASP) top 10 cloud-native risks, and DevSecOps, help to understand and address

these unique security concerns.

1) Cloud Architecture Overview for Applications - the use of microservices, containers,

service meshes, declarative Application Programming Interfaces (API), and immutable

infrastructure-enabled building blocks of scalable and resilient capabilities. Cloud

offerings such as Software as a Service (SaaS), Platform as a service (PaaS),

Infrastructure as a service (IaaS) applications. Cloud application implementations such

as Cloud-enabled applications, containerized applications, microservices and the Zero

Trust Model adapted for the cloud environment.

2) OWASP Top 10 Cloud-native Risks - most common application vulnerabilities that occur

in cloud-native applications.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 6

3) DevSecOps Security Concerns - shifting security left to establish additional security

guardrails for cloud-native applications through the use of:

• Security controls - Infrastructure as Code (IaC) scanning. Implementing traditional

methods such as Static Application Security Testing (SAST) and Software

Composition Analysis (SCA) to scan for vulnerabilities in code deployed within cloud-

native services. Enabling workload monitoring and integrity checks for workloads.

• Security Standardization - Utilizing security standardization frameworks such as CIS,

ISO and NIST to implement the best security practices and develop applications in

line with the latest application security standards.

Security Automation - Leveraging automation to enforce policies in a cloud

environment, disabling unwanted configurations, and detecting configuration drift

to meet cloud security standardization frameworks recommendations.

The threat landscape is always changing, and cloud technologies are constantly evolving, so

it is vital to continuously improve existing security controls such as the use of SAST and SCA

in the SDLC and apply additional security safeguards like IaC scanning and additional

security automations as cloud-native applications become more widely adopted. Minimizing

risk in environments must be achieved through strategic planning and automation

throughout the organization. This paper will address the main challenges faced when

protecting cloud-native applications.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 7

Table of Content
About the Authors .. 2

Executive Summary .. 5

Introduction ... 8

Objective .. 8

Audience .. 10

Structure of the paper .. 10

How to protect cloud-native applications? ... 11

Cloud Architecture Overview for Applications ... 11

Shared Responsibility Model ... 13

Types of Implementations .. 16

Microservices ... 17

Zero Trust .. 18

OWASP Top 10 Cloud-native Risks ... 20

DevSecOps Security Concerns ... 24

Security Controls available to protect cloud-native apps ... 26

Security Standardization .. 31

Security Automation ... 38

Conclusion ... 45

References .. 48

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 8

Introduction

Objective

Cloud technology has opened a world of opportunities when implementing applications.

The ability to quickly respond to customer demands for highly efficient features has made

cloud environments a perfect ecosystem to meet such demands. The capabilities provided

by cloud architectures enable the organization to accelerate the time to market solutions

while at the same time having the flexibility to respond to increasing resource needs.

Despite all these benefits, security is still a major area of concern when moving application

implementations to the cloud. The vast availability of resources and cloud-native services

requires careful consideration when implementing the solutions in cloud environments.

Because the infrastructure now relies on services developed and deployed by cloud

providers, the shared responsibility model is an important component to define the security

implementation strategy.

To provide visibility of the multiple layers of security concerns, the OWASP has developed

the “OWASP Cloud-Native Application Security Top 10” to assist organizations to securely

deploy applications in the cloud (n.d.). Security misconfigurations, resource integrity, and

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 9

traditional Software Development Lifecycle (SDLC) concerns are among the wide range of

considerations for any organization looking to secure their implementations end-to-end in a

cloud environment.

With those concerns in mind, this paper will address the main challenges faced when

protecting cloud-native applications. The term cloud-native expands beyond the traditional

realm of SDLC practices. It involves not only the application, but new technology

components (such as containers) and configuration requirements. Cloud-native applications

encompass a new approach to how software is built, deployed, and managed in cloud

computing environments (Amazon, n.d.). The need to be able to continuously repeat a

secure deployment in an environment where the security responsibility is shared with the

cloud provider requires standardization and automation to be at the forefront of the

discussion on how to secure cloud-native applications.

Security controls such as Static Application Security Testing (SAST), Software Composition

Analysis (SCA), Infrastructure as Code (IaC), and other SDLC security controls are discussed

as they provide the perfect continuity of shift-left adoption in cloud computing. This paper

will cover anti-tampering protection along with workload monitoring and alerting to

complete the broad spectrum of security concerns.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 10

Audience

The audience of this white paper includes cloud architects, security engineers, lead software

engineers, product managers, senior managers, and senior executives responsible for the

implementation of software security in cloud environments, as well as those managing the

risk associated with threat vectors in cloud-native applications.

Structure of the paper

This paper introduces the importance of securing cloud-native applications to minimize risk

to the organization. First, a discussion of cloud architecture is covered, followed by the

presentation of the most common threat vectors impacting cloud-native applications as

defined by OWASP. Next, the security controls needed to ensure cloud-native applications

enforce a strong security posture are introduced and discussed. Strategies on how to

leverage standardization and automation are finally discussed to ensure a consistent,

repeatable, and secure deployment of applications in cloud environments to ensure security

and compliance requirements are met.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 11

How to protect cloud-native applications?

Securing cloud-native applications requires a comprehensive approach considering not only

the traditional security controls needed to secure applications but also securing resources

and configurations in cloud environments. This section will provide a high-level

understanding of cloud architectures, and how OWASP is classifying the most common

threat vectors for applications in cloud environments, followed by a discussion of

standardization and automation to enforce DevSecOps in the cloud.

Cloud Architecture Overview for Applications

A cloud-native application is a software application designed and developed from the start

to run in cloud computing environments. These applications are built using a set of

principles and practices that maximize the benefits of cloud computing, such as scalability,

elasticity, security, and resilience.

While traditional applications are developed using a 3-tier, monolithic client-server

architecture comprising the presentation, application, and database layers, cloud-native

applications will use microservices, containers, service meshes, declarative Application

Programming Interfaces, and immutable infrastructure, a loosely coupled collection of

building blocks designed to be scalable, resilient, and manageable.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 12

By breaking down an application into smaller, independently deployable microservices,

developers can create more agile and flexible applications that can be scaled up or down

depending on the demand. Declarative APIs and immutable infrastructure ensure that

applications are built using a consistent and repeatable process, making deployment and

management easier. Containers, which are lightweight and portable, make deploying and

managing microservices easier. At the same time, service meshes provide advanced

networking capabilities that allow microservices to communicate with each other securely

and reliably. Figure 1 provides an overview of new technologies in cloud environments

supporting application implementations.

Figure 1 New technologies used in cloud environments to support application implementations. From

"Four Architecture Choices for Application Development in the Digital Age", by Saraswathi, 2020, [Digital

Image]. https://www.ibm.com/cloud/blog/four-architecture-choices-for-application-development

https://www.ibm.com/cloud/blog/four-architecture-choices-for-application-development

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 13

Shared Responsibility Model

There are three main cloud service models:

• Software as a service (SaaS)

• Platform as a service (PaaS)

• Infrastructure as a service (IaaS)

Software as a service (SaaS) is a cloud computing model where software applications are

provided over the internet. The software provider hosts and maintains the application,

manages the underlying infrastructure and handles software updates and upgrades. They

are responsible for the application's security, while the user is responsible for its data and

granting proper access. Examples of SaaS applications include email, customer relationship

management (CRM) software, project management tools, and accounting software.

Platform as a service (PaaS) is a cloud computing model where users can rent and access a

complete platform for developing, running, and managing their applications over the

internet without worrying about the underlying infrastructure. PaaS platforms typically

provide features such as automatic scaling, load balancing, and application monitoring,

which can help improve applications' availability, performance, and scalability. In this mode,

users are responsible for the application running on the platform and their data. Examples

of PaaS are AWS (Amazon Web Services) Elastic Beanstalk, Heroku, and Red Hat OpenShift.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 14

Infrastructure as a service (IaaS) is a cloud computing model where users can rent and

access computing infrastructure resources, such as virtual machines, storage, networking,

and other computing resources, on a pay-as-you-go basis. The cloud provider hosts and

manages the underlying physical infrastructure, such as servers, storage devices, and

networking equipment. Users control those virtual machines' operating systems,

applications, and other software. Some IaaS providers include Amazon Web Services (AWS),

Microsoft Azure, Google Cloud Platform (GCP), and Oracle Cloud.

The following figure shows how the Customer and the Cloud Service Provider (CSP) share

the responsibilities, comparing the previous models with the on-premises model. CSPs are

responsible for the Security of the Cloud and customers are responsible for Security in the

Cloud. It is essential to highlight that the client is always responsible for protecting their

data. Figure 2 provides an overview of the responsibility breakdown based on the shared

responsibility model.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 15

Figure 2 Shared Responsibility Model per type of cloud architecture. From "The Shared

Responsibility Model and SaaS, Explained", by Ciesielski, 2023, [Digital Image].

https://rewind.com/blog/shared-responsibility-model-saas-explained/

Sometimes, the Cloud Service Provider (CSP) and the customer share security

responsibilities. For instance, the CSP will provide an Identity and Access Management

service where the customer is responsible for creating the groups the application needs and

assigning proper permissions.

https://rewind.com/blog/shared-responsibility-model-saas-explained/

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 16

Types of Implementations

Cloud-enabled applications

Traditional applications can be deployed on the cloud, using IaaS which performs the

function of the on-premises computing center. These applications are called cloud-enabled

applications. Traditional apps and services typically require a virtual machine to run (IBM,

n.d.).

Containerized applications

Developers can use containers to encapsulate and distribute the application's architectural

blocks, such as the application servers, database servers, and web servers. Containers will

provide a high level of isolation between the application and the host system, which helps

to ensure that the application runs consistently on any host with a container runtime.

A container runtime, such as Docker, is a piece of software responsible for creating and

managing the lifecycle of containers, including starting, stopping, pausing, and restarting

containers as needed. The runtime also provides isolation between containers, ensuring

each container has its dedicated resources and cannot interfere with other containers

running on the same host system.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 17

Container runtimes are part of a container engine, also known as a container platform or

container management system. Container engines provide tools and services for building,

deploying, and managing containerized applications and a variety of other services and

tools, such as:

• Image registries for storing and distributing container images.

• Container orchestration tools for managing and scaling containerized applications

across multiple hosts.

• Networking and storage plugins for managing container networking and storage

resources.

• Security and monitoring tools for ensuring the security and performance of

containerized applications.

Examples of container engines include Docker, Kubernetes, and Amazon Elastic Container
Service (ECS).

Microservices

Another architectural solution is to arrange the application as a collection of loosely

coupled, fine-grained services called microservices. These microservices communicate with

each other through lightweight protocols. With this architectural model, developers can

develop and deploy their services independent of other services, reducing dependencies

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 18

and making it easier to make changes: a change to a small part of the application only

requires rebuilding and redeploying only one or a small number of services (Fowler, &

Lewis, 2014).

Kubernetes is a popular platform for building and deploying applications based on

microservices architecture. It is an open-source container orchestration system that

automates containerized applications' deployment, scaling, and management across

multiple hosts. Kubernetes has emerged as the industry standard for container

orchestration and continues to gain widespread adoption as more organizations embrace

cloud-native application development practices. To cater to the growing demand, major

cloud providers such as Amazon, Microsoft, Google, and IBM offer their Kubernetes

implementations as a service, including Amazon Elastic Kubernetes Service (EKS), Microsoft

Azure Kubernetes Service, Google Kubernetes Engine, and IBM Cloud Kubernetes Service.

These services allow organizations to leverage the power of Kubernetes without managing

the underlying infrastructure, making it easier to deploy and manage applications based on

microservices at scale.

Zero Trust

The conventional method of securing a network assumes that a user, device, or application

that has been given access to the network can be trusted to access any resource on that

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 19

network based on its physical or network location. However, this approach is no longer

effective in protecting against modern cyber threats. Zero Trust is an evolving set of

cybersecurity paradigms that move defenses from static, network-based perimeters to

focus on users, assets, and resources (National Institute of Standards and Technology,

2018).

In a Zero Trust model, all users, devices, and applications must undergo verification and

authentication before accessing any resource: "never trust, always verify". The core

principles of Zero Trust are (Microsoft, n.d.):

• Verify explicitly: Always authenticate and authorize based on all available data

points. Use strong authentication (MFA) and verify that every device meets security

requirements.

• Use least privilege access: Limit user access with Just-In-Time and Just-Enough-

Access (JIT/JEA), risk-based adaptive policies, and data protection.

• Assume breach: Minimize blast radius and segment access. Verify end-to-end

encryption and use analytics to get visibility, drive threat detection, and improve

defenses. Encrypt your data wherever it resides.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 20

OWASP Top 10 Cloud-native Risks

The Open Worldwide Application Security Project, often abbreviated OWASP, is a nonprofit

foundation led by community open-source software projects and members. The foundation

helps developers and security professionals across all industries to improve software

security. OWASP initially gained popularity due to their “Top 10 Web Application Security

Risks,” a list of the most common application vulnerabilities, highlighting areas on which

developers should focus on. In 2021, OWASP established a new top ten list, “Cloud-Native

Application Security Top 10,” (n.d.) focused on cloud-native applications. This targeted list is

intended for organizations looking to implement a new—or mature and existing— secure

cloud-native application strategy.

OWASP’s “Cloud-Native Application Security Top 10” continues to be updated as needed; as

a result, the list may change from year to year, either in the type of risk or the order in

which the risks appear. To help address these risks being so prevalent, multiple vendors and

open-source projects have developed cloud security scanners that can scan configuration

files to identify these risks before they are deployed into production. The following are the

top 10 risks as of March 2023, with a high-level summary of each below:

• Insecure cloud, container, or orchestration configuration

• Injection flaws (app layer, cloud events, cloud services)

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 21

• Improper authentication & authorization

• CI/CD pipeline & software supply chain flaws

• Insecure secrets storage

• Over-permissive or insecure network policies

• Using components with known vulnerabilities

• Improper assets management

• Inadequate ‘compute’ resource quota limits

• Ineffective logging & monitoring (e.g., runtime activity).

Insecure cloud, container, or orchestration configuration

The first and most prominent risk for cloud-native applications is insecure configurations.

Insecure configurations can be present in a variety of situations, ranging from containers

running as a super “root” user to the unintentional exposure of data by utilizing public

instead of private storage settings.

Injection flaws (app layer, cloud events, cloud services)

Just as standard applications are susceptible to a multitude of injection-related

vulnerabilities, so too are cloud-native applications. Services that are publicly exposed are

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 22

more vulnerable to attacks such as SQL injection. Injection flaws like OS Command injection

can allow an attacker to execute arbitrary operating system commands on the underlying

server running the application.

Improper authentication & authorization

With the complexity that comes with cloud identity management, it is not uncommon for

access and authorizations to be improperly assigned. A mistake such as an overly permissive

cloud IAM role could allow a user to have access to resources they otherwise should not. An

unauthenticated API could allow an attacker access to data without having to provide any

credentials.

CI/CD pipeline & software supply chain flaws

Flaws in the continuous integration and continuous development (CI/CD) pipeline can be

the entry point for an attacker. For example, a lack of proper authentication and

authorization on the pipeline applications may allow an attacker to manipulate code and

push it into production without proper checks and balances.

Insecure secrets storage

Secrets can hold the keys to an application; consequently, the improper and insecure

storage of keys can lead to secrets being viewed by an attacker. The more common

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 23

scenarios in which secrets are unintentionally exposed are secrets, keys, or passwords that

are stored unencrypted or hardcoded into the application’s code.

Over-permissive or insecure network policies

The importance of secure network polices for a cloud-native application cannot be

overstressed. The risk of not monitoring or blocking potentially malicious domains could

lead to malicious traffic hitting an application. However, internal network policies are

equally critical to securing an application; inadequate segmentation could allow an attacker

to access resources intended to be internally accessible only while unencrypted

communication channels could allow an attacker to gather potentially sensitive information

or even perform a man-in-the-middle attack.

Using components with known vulnerabilities

An application is only as secure as its weakest link. Just as with standard applications, cloud-

native applications often fall victim to vulnerabilities that exist in third-party packages that

are imported. Standard code scanning tools in the Software Development Life Cycle (SDLC)

can often catch risks in this category.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 24

Improper assets management

Knowing what exists in an environment is one of the essential aspects of securing an

environment. Improper asset management—or a lack of asset management all together—

can lead to undocumented APIs and services.

Inadequate ‘compute’ resource quota limits

While dynamic resource scaling is a critical component of cloud computing, applications

without controls in place to limit this scaling could lead to excessive resource usage.

Similarly, not having enough resources available for scaling could allow an attacker to

perform a denial-of-service (DOS) attack by overloading the system.

Ineffective logging & monitoring (e.g., runtime activity)

Proper logging not only enables an organization to proactively monitor activity and

performance of an application to prevent issues from happening, but it can also be critical

to a successful forensics’ investigation in a scenario where suspicious activity was detected.

DevSecOps Security Concerns

The adoption of a shift-left approach along with standardization and automation

capabilities provides a comprehensive roadmap toward the enforcement of secure

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 25

implementations of cloud-native applications. The need to establish security guardrails will

inevitably require the implementation of traditional security controls to ensure early

detection of potential risks. As cloud-native applications are deployed within the purview of

cloud services, securing the configuration of the application and the cloud services becomes

a key combination of any successful implementation.

Having the ability to successfully repeat a consistent secure implementation will require the

addition of Infrastructure as Code (IaC) along with automation to continuously improve and

achieve efficiencies during the deployment and management of cloud-native applications.

Policy and compliance guardrails will require the adoption of monitoring and integrity

checks to ensure business regulatory requirements are met in a standard fashion. The next

sections in the paper provide a broad discussion on how to integrate all these components

to secure cloud-native applications. Specifically, the paper will focus the discussion on three

key areas:

• Security controls

• Standardization

• Automation

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 26

Security controls available to protect cloud-native apps

Cloud-native applications operate in a different technology landscape than traditional

applications. In a traditional sense, the organization creating software has full control of the

code to be deployed. When dealing with cloud-native applications, that is not necessarily

the case. Cloud providers have different native services intended to support the

implementation of features without the need to create any component by the organization.

This reality brings to the forefront the discussion of shared responsibility model, which is

discussed as part of the section Cloud Architecture Overview for Applications. In essence,

there are several areas of interest when securing cloud-native services:

• Scanning IaC code

• Implementing traditional SAST/SCA to scan for vulnerabilities in code deployed in

cloud-native services

• Workload monitoring

• Integrity checks for workloads

Scanning IaC code

In a shared responsibility model, both the organization and the cloud provider will need to

ensure the implementation of native services leveraged by organizations is secure. From a

traditional security controls perspective in the Software Development Lifecycle (SDLC),

testing tools such as Static Application Security Testing (SAST), Software Composition

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 27

Analysis (SCA), etc. are not going to come into play for the organization from a responsibility

perspective in terms of the cloud-native services created by the cloud providers. Figure 3

provides a summary of the security controls traditionally needed to secure an application.

As they implement the code that will support the cloud-native services, the cloud providers

will have to ensure SAST, SCA, etc. are implemented as part of their secure Software

Development Lifecycle (SDLC) to enforce a shift-left and minimize the risk of potential

software weaponization.

Figure 3 Security controls needed in the SDLC. From "Software Security Automation: A
Roadmap toward Efficiency and Security", by Heim, Keim, Munsch & Pabon, 2020, [Digital
Image]. https://ndisac.org/wp-content/uploads/ndisac-security-automation-white-
paper.pdf

https://ndisac.org/wp-content/uploads/ndisac-security-automation-white-paper.pdf
https://ndisac.org/wp-content/uploads/ndisac-security-automation-white-paper.pdf

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 28

This leads the discussion to the configuration needed to implement the solution in the cloud

environment. The configuration of the cloud-native services is the responsibility of the

organization. Since the configuration very often will need to ensure all potential scenarios

are covered, cloud providers tend to start with a wide-open stance with the understanding

that organizations will harden the configuration as needed. That is where the risk lies; the

lack of understanding on how to securely configure those services could expose the

organization to unnecessary risk. Consider a scenario where a cloud provider provides a

Network Firewall as a service. The Network Firewall is intended to protect part of network

traffic but is configured “out-of-the-box” to enable wide access to the application(s) and is

only effective if the organization provides the right Access Control rules. Therefore, the

organization becomes responsible for enforcing the rules needed to secure the network.

This reality creates an inherent risk to the organization. If multiple configurations are

needed for multiple network firewalls, the organization will need to establish a common

configuration that can serve as a standard secure baseline. Performing this configuration

process manually over and over again would not only create severe overhead but risk.

Organizations should consider the use of templates as an approach to standardize

configurations and facilitate automation by leveraging Infrastructure as Code (IaC). IaC

enables organizations to deploy infrastructure using configuration files which facilitates a

standard baseline across the board for all implementations (National Institute of Standards

and Technology, 2023).

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 29

To properly secure code used associated with IaC, a security control similar to the SAST will

have to be deployed as close as possible to the developers responsible for creating the

code. This security control can evaluate the IaC code and determine the existence of

security misconfiguration that could pose a risk to the implementation. Just like SAST, this

security control can be embedded in the Integrated Development Environment (IDE) as a

plugin as well as work in a DevOps pipeline through either a plugin or a Command Line

Interface (CLI). In a DevOps pipeline scenario, the security control can break the execution

of the stages in the DevOps pipeline and report back the findings identified as part of the

scanning. Automation is a key component of the IaC security control in DevOps. For details

about automation, please see the section Security Automation which provides a broader

discussion.

Implementing traditional SAST/SCA to scan for vulnerabilities in code deployed in cloud-native

services

Moving the discussion away from IaC and focusing on native cloud services (for example,

serverless functions) used by applications, some cloud providers will allow adding code and

libraries or frameworks to support the implementation. In such cases, the code as well as

the dependencies used with the native cloud services by the organization would need to

follow a traditional approach of leveraging common security controls such as SAST and SCA.

The SAST tool will help identify any potential threat vector included in code snippets. The

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 30

SCA tool will help understand any risk associated with any dependency included as part of

the organization's implementation of native cloud services.

With the use of SAST and SCA for the code deployed into cloud-native services, we must

remember that the same principles applied to the SDLC will apply. Security vulnerabilities

identified by security controls will need to be recorded as part of the issue tracker. A

remediation workflow must be established to ensure proper planning and remediation are

exercised. Finally, security testing becomes important to ensure security vulnerabilities

previously identified are remediated. Regardless of whether we are dealing with IaC or

cloud-native services, security controls are going to be an important component when

securing applications in cloud environments.

Workload Monitoring

Cloud environments also offer special workload capabilities such as containers. The use of

container images will require the verification of the dependencies with SCA, and the

workload runtime will need to ensure that security is embedded using a shift-left approach.

Establishing policies to validate workloads are following security best practices (for

example, workloads not intended to be public are configured to allow public IP address

access) must be enforced through continuous monitoring of security misconfiguration.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 31

The second area of concern is associated with monitoring the activity executed against

workloads. Ensuring logs are configured, activity is monitored, and runtime security policies

are enforced will enable the organization to be proactive in the response to potential

malicious behaviors in the application implementation. Cloud providers offer services to not

only log data but also alert when special instances of deviations are detected.

Integrity checks for workloads

Just like in on-premises implementations, organizations need to ensure attackers are not

able to tamper with the application implementation. Countering this concern will require

the implementation of anti-tampering controls. Organizations need to pay special attention

to how they verify the integrity of workloads and the means of operation for an

application/implementation in the cloud. Utilizing code signing with their artifacts will

provide a much-needed integrity check which will enforce a non-repudiation mechanism.

Security Standardization

According to a 2021 report from F5 Labs (2021):

• 56% of the largest incidents in the previous 5 years were associated with a web

application security issue.

• The average time-to-discovery for incidents involving web application exploits is 254

days.

• Web application attacks were the #1 way leading to a data breach incident.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 32

• Exploit Public-Facing Application is the #1 or #2 reported technique for Initial Access

among varying security vendors.

Figure 4 provides a breakdown of the top initial access techniques associated with exploits
in web applications.

Figure 4 Top Initial Access Techniques According to Multiple Sources. From "The State of the
State of Application Exploits in Security Incidents", by F5 Labs, 2021, [Digital Image].
https://www.f5.com/content/dam/f5-labs-v2/article/pdfs/The-State-of-the-State-of-
Application-Exploits-in-Security-Incident-F5Labs-rev22JUL21.pdf

A different report from security firm Rapid7 (2021) suggests that 50% of the vulnerabilities

they monitored were exploited within seven days of public disclosure and the average time

to known exploit was 12 days. Whereas only 30% were exploited within seven days of public

disclosure and the average time to known exploits was 42 days the year prior, which is a

71% decrease in time. With adversarial temptation being relatively high due to the public-

facing nature of many web applications, paired with increasingly shortened time from

public disclosure to active exploit, organizations need to consider adopting a security

standardization framework to help implement best application security practices and

develop applications that are in line with the latest application security standards to ensure

maximum security and protection of users.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 33

Today there are several standardization frameworks which are created with organizations in

mind to help identify and remove application security vulnerabilities in complex software

systems. Some organizations such as CIS, ISO, and NIST offer up Application Security

recommendations as part of a broader set of controls that govern IT security. Other

organizations such as OWASP are popular because they have a framework specifically

designed for web applications.

The Center for Internet Security (CIS) is a nonprofit organization that helps develop,

validate, and promote timely best-practice solutions that help people, businesses, and

governments protect themselves against pervasive cyber threats. The CIS Application

Software Security Control spans 14 safeguards (Center for Internet Security, n.d.):

• 16.1: Establish and Maintain a Secure Application Development Process

• 16.2: Establish and Maintain a Process to Accept and Address Software

Vulnerabilities

• 16.3: Perform Root Cause Analysis on Security Vulnerabilities

• 16.4: Establish and Manage an Inventory of Third-Party Software Components

• 16.5: Use Up-to-Date and Trusted Third-Party Software Components

• 16.6: Establish and Maintain a Severity Rating System and Process for Application

Vulnerabilities

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 34

• 16.7: Use Standard Hardening Configuration Templates for Application

Infrastructure

• 16.8: Separate Production and Non-Production Systems

• 16.9: Train Developers in Application Security Concepts and Secure Coding

• 16.10: Apply Secure Design Principles in Application Architectures

• 16.11: Leverage Vetted Modules or Services for Application Security Components

• 16.12: Implement Code-Level Security Checks

• 16.13: Conduct Application Penetration Testing

• 16.14: Conduct Threat Modeling

The Application Normative Framework under International Organization for Standardization

(ISO) 27034 is a list of application security controls which are applied with a targeted level

of trust in mind, which ISO defines as “a set of Application Security Controls deemed

necessary by the application owner to lower the risk associated with a specific application

to an acceptable (or tolerable) level” (International Organization for Standardization, n.d.).

The National Institute of Standards and Technologies (NIST) provides various standards and

frameworks for cybersecurity, including NIST Special Publication (SP) 800–218: Secure

Software Development Framework (SSDF) Version 1.1. NIST Special Publication (SP) 800–

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 35

218 can also help with the creation of high-level objectives and covers the following

safeguards (National Institute of Standards and Technology, 2022):

• Organizations should ensure that their people, processes, and technology are prepared

to perform secure software development.

• Organizations should protect all components of their software from tampering and

unauthorized access.

• Organizations should produce well-secured software with minimal security

vulnerabilities in its releases.

• Organizations should identify residual vulnerabilities in their software releases and

respond appropriately to address those vulnerabilities and prevent similar ones from

occurring in the future.

The Open Worldwide Application Security Project (OWASP) is a nonprofit foundation that

works to improve the security of software and may be considered one of the more popular

options due to its focus specifically on web applications. The OWASP Application Security

Verification Standard (ASVS) Project provides a basis for testing web application technical

security controls and provides developers with a list of requirements for secure

development along the way (OWASP, 2021).

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 36

The OWASP Application Security Verification Standard (ASVS) spans 14 safeguards with 3

Application Security Verification Levels with a required checklist to ensure that key actions

are completed to receive a verification level. Figure 5 provides an example of the list of

Application Security Verification Levels.

Figure 5 Checklist example. From "Application Security Verification Standard 4.0.3", by
OWASP, 2021, [Digital Image].
https://github.com/OWASP/ASVS/raw/v4.0.3/4.0/OWASP%20Application%20Security%20V
erification%20Standard%204.0.3-en.pdf

Verification Levels:

• ASVS Level 1 is for low assurance levels and is completely penetration testable - An

application achieves ASVS Level 1 if it adequately defends against application

security vulnerabilities that are easy to discover and included in the OWASP Top 10

and other similar checklists.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 37

• ASVS Level 2 is for applications that contain sensitive data, which requires

protection and is the recommended level for most apps.

• An application achieves ASVS Level 2 (or Standard) if it adequately defends against

most of the risks associated with software today.

• ASVS Level 3 is for the most critical applications - applications that perform high-

value transactions, contain sensitive medical data, or any application that requires

the highest level of trust - This level is typically reserved for applications that

require significant levels of security verification, such as those that may be found

within areas of military, health and safety, critical infrastructure, etc.

Safeguards:

• Architecture, Design, and Threat Modeling

• Authentication

• Session Management

• Access Control

• Validation, Sanitization, and Encoding

• Stored Cryptography

• Error Handling and Logging

• Data Protection

• Communication

• Malicious Code

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 38

• Business Logic

• Files and Resources

• API and Web Service

• Configuration

Many organizations can benefit from adopting a standardization framework as a means of

creating and maintaining secure software.

Security Automation

Maintaining a consistent and compliant security posture in cloud environments and on-

premises requires the enforcement of a set of standard configurations and security policies.

Statistics show many organizations are still enforcing a standard configuration using manual

execution without leveraging automation (Wallgren, 2017). This approach minimizes the

efficiency gains organizations can achieve by leveraging technological innovations. To

complicate the security landscape, cloud environments tend to have an open stance

configuration by default. For example, when a cloud tenant (IaaS, PaaS) gets created, all the

resources defined are not assuming a default deny stance and expose resources without

public and private considerations.

To be compliant and secure, organizations will need to adopt a proactive approach toward

standardizing how resources are deployed, configured, and tested in a cloud environment.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 39

Employing security automation leveraging standardization will guarantee a consistent,

secure, and compliant configuration will be enforced every time applications are deployed.

When automating security, organizations will need to capture all potential scenarios to

properly define what to look for:

• internet-facing resources.

• private resources.

This breakdown will enable organizations to differentiate when resources used by an

application need to enforce a more restrictive approach because they are private than

when they are intended to be used by anyone on the internet. Let’s consider a scenario to

understand the importance of security automation.

Cloud providers offer several capabilities to restrict how resources are used and protected.

Security groups, Network Access Control Lists, and API Gateways are just a few examples of

resources available to organizations when enforcing a strong security stance. As an

example, any resource deemed internal will have to ensure a quad zero (0.0.0.0/0)

configuration is never included in Security Groups. Quad zero configurations enable any

resource to be accessible from anywhere (assuming there are no other compensating

controls in place).

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 40

In a scenario where a database is used as part of an application, not paying attention to the

quad-zero configuration could expose the data to risk. Per security best practices, databases

should never be exposed directly to the internet. Having a quad-zero configuration for a

database could potentially expose it to the Internet, enabling attackers to attempt to

compromise it. To enforce a strong security posture, teams working with the

implementation will have to ensure the configuration is always set to prevent internet

exposure for database assets. In this scenario, it will be expected for any team

implementing an application that is using a database to always ensure the default quad-

zero configuration is removed.

Because of human nature, performing a manual process in every single implementation to

prevent a data compromise could lead to a potential compromise. There are many

scenarios under which relying upon a manual configuration to be consistently repeated

could face challenges. Some common scenarios include:

• Members of a team with the required knowledge to protect may leave.

• Subject Matter Experts (SMEs) may forget to adjust the configuration.

• New members of the implementation team may not be security-savvy.

• Default behaviors of cloud resource provisioning may be overlooked.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 41

To minimize the potential impact of overlooking the configuration needed to enforce a

strong security posture, organizations need to combine standardization with automation.

There are two main trends in terms of how to leverage technology innovation in the

automation space to achieve standardization. First, cloud providers offer native services to

evaluate the configuration of resources to ensure they are following security best practices.

All major cloud providers (AWS, Azure, Google Cloud, etc.) provide services that can

leverage tags to determine if resources are not following a compliant deployment

configuration. These services can automatically adjust the configuration to ensure a

standard deployment across the cloud landscape.

Using the previous database example, such a capability can be used to automate checking

that resources tagged as private do not have a quad-zero configuration present. This means

that such services can adjust the configuration automatically to always enforce a consistent

implementation without any human intervention. Whether the team lost the SMEs or

lacked the knowledge to secure the implementation becomes irrelevant; as the

environment itself is enforcing a secure posture through the automation of required

security configurations for native cloud services. Because of the powerful capabilities

provided by hosting services in cloud environments, the organization needs to establish a

Change Control Board (CCB) to evaluate not only the initial implementation but also any

future changes that could potentially impact how security is enforced in the cloud. This

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 42

evaluation will ensure automation activities are performing sound and compliant security

practices.

The other option available to organizations to enforce standardization through automation

is the use of Infrastructure as Code (IaC). The use of IaC has been recognized as a key

component of not only the provisioning of resources in technology environments but also a

core capability for DevSecOps. Figure 6 provides an overview of the configuration

provisioning using IaC to control a standard configuration.

Figure 6 IaC enforcing a standard secure configuration. From “The best Infrastructure as
Code tools for 2022” by Valdes, 2022, https://www.clickittech.com/devops/infrastructure-
as-code-tools/

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 43

The NIST recognizes the importance of IaC as a mechanism to achieve repeatable and

consistent configurations (National Institute of Standards and Technology, 2022, p. 19). The

use of IaC with automation would ensure in our database example that resources tagged as

private are always provisioned without the quad-zero configuration. Just like with the native

services, a CCB will be required to review and approve any changes to the IaC code, and to

verify any enhancements adhere to the organization’s compliance and security

requirements.

Now, automation can be as good as the definition that is embedded as part of the IaC code.

Therefore, it becomes extremely important to automate the scanning of security

misconfigurations in IaC code before including those changes as part of the standard

baseline to be utilized when deploying resources for an application implementation in a

cloud environment. There are many solutions provided in the industry to scan for security

misconfigurations.

The process provided by these tools follows a similar approach to the one associated with

Static Application Security Testing (SAST) tools. You can embed the security scanning of IaC

as part of the Integrated Development Environment (IDE) to enforce a “shift-left approach”

and detect risk as soon as the developer is creating the IaC code. Figure 7 provides an

overview of embedding IaC security check through automation. There is also the option of

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 44

embedding the security checks as part of the DevOps pipeline. Teams can use plugins and

Command Line Interfaces (CLIs) to trigger scans as part of a stage in a DevOps pipeline,

identify a security risk, and even stop the execution to prevent the potential rollout of the

risk to a production environment.

Figure 7 Embedding IaC security checks through automation. From " Building IaC Pipeline on
AWS with Security Fully Integrate ", by Cardoso, 2020,].
https://fernando0stc.medium.com/building-iac-pipeline-on-aws-with-security-fully-
integrate-48952c3435b7

Security automation can also be extended to the feedback loop. Once a security

misconfiguration is detected in the DevOps pipeline by a security scan plugin or a CLI, the

automation can leverage the information provided by the scanning tools to upload the

information to the issue tracker for proper planning. This level of automation will ensure

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 45

consistent ingestion of security misconfigurations for each release of code is consistently

available to be evaluated as part of each build cycle planning.

Despite human capital challenges faced by teams, automation through standardization

ensures a consistent and repeatable secure, and compliant implementation all the time.

Enforcing a consistent configuration reduces manual overhead while improving the

efficiency of the delivery of a standard security posture. Organizations evaluating the cost-

benefit associated with the implementation of security automation in their resource

provisioning will quickly realize not only the efficiency gains associated with adopting

automation but also a stronger security posture. These benefits will empower decision-

makers to start adopting a “shift-left” approach to standardize secure configuration and

deployment of applications in cloud environments.

Conclusion

Mitigating risk associated with cyberattacks against cloud-native applications requires a

continuous improvement process that includes careful consideration of the following key

concerns:

• Who is responsible for which component of the cloud infrastructure?

• How can organizations repeat a consistently secure and compliant deployment?

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 46

• How can organizations detect and protect proactively against the risk associated

with code, dependencies, workloads, and configuration?

• How can organizations implement efficiencies while maintaining a strong security

posture in cloud-native applications?

The answer to these questions relies on a combination of security guardrails designed to

leverage continuous innovation with security embedded at every step of the process. Cloud

providers enable multiple services to allow an organization to define its security posture. To

ensure the achievement of consistent implementation of security guardrails and compliant

configurations organizations must leverage standardization through the use of IaC.

However, IaC alone will not minimize risk.

The code associated with IaC must be scanned for security vulnerabilities just like we scan

for SAST and SCA in the SDLC. As workloads are implemented and code gets deployed to

cloud-native services, scanning for dependencies and containers becomes a key risk

mitigation strategy. Leveraging SCA and container security scanning will help with proactive

detection. Embedding these scans in a DevOps pipeline will help the organization achieve

efficiencies and security gates throughout the process of deploying applications to the

cloud.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 47

Once organizations have embedded security scanning in IaC, automation through

DevSecOps must be implemented to ensure they achieve efficiency gains while security is

enforced at the forefront of the implementation. Monitoring workloads and ensuring

compliance with established security policies will help minimize risks across every single

implementation. In summary, securing cloud-native applications requires covering concerns

for:

• Security misconfigurations

• Threat vectors in dependencies

• Lack of proper authentication and authorization

• CI/CD and software supply chain risks

• Inadequate resource utilization controls

• Ineffective logging and monitoring

Effectively protecting cloud-native applications involves a complex mix of traditional

controls for new technology innovation elements provided by cloud providers. Minimizing

risk in such environments must be planned and executed with a strategic mindset by the

organization.

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 48

References

Amazon. (n.d.). What is Cloud-native? Amazon. https://aws.amazon.com/what-is/cloud-native/

Cardoso, F. (2020, November 2). Building IaC Pipeline on AWS with Security Fully Integrate.

[Digital Image]. https://fernando0stc.medium.com/building-iac-pipeline-on-aws-with-

security-fully-integrate-48952c3435b7

Ciesielski, J. (2023, January 16). The Shared Responsibility Model and SaaS, Explained. [Digital

Image]. https://rewind.com/blog/shared-responsibility-model-saas-explained/

Center for Internet Security. (n.d.). CIS Critical Security Control 16: Application Software

Security. CISSecurity. https://www.cisecurity.org/controls/application-software-security

F5. (2021). The State of the State of Application Exploits in Security Incidents. The-State-of-the-

State-of-Application-Exploits-in-Security-Incident-F5Labs-rev22JUL21.pdf

Fowler, M., Lewis, J. (2014, March 25). Microservices. Martin Fowler.

https://martinfowler.com/articles/microservices.html

Heim, M., Keim, P., Munsch, J., Pabon, W. (2020). Software Security Automation: A Roadmap

toward Efficiency and Security. https://ndisac.org/wp-content/uploads/ndisac-security-

automation-white-paper.pdf

IBM. (n.d.). Cloud-native. IBM. https://www.ibm.com/topics/cloud-native

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 49

International Organization for Standardization. (n.d.). Information technology — Security

techniques — Application security — Part 1: Overview and concepts. ISO.

https://www.iso.org/obp/ui/#iso:std:iso-iec:27034:-1:ed-1:v1:en

Microsoft. (n.d.). Zero Trust implementation guidance | Microsoft Learn. Microsoft.

https://learn.microsoft.com/en-us/security/zero-trust/zero-trust-overview

National Institute of Standards and Technology. (2018). Zero trust architecture. (Department of

Commerce D.C.), Special Publication 800-207. https://doi.org/10.6028/NIST.SP.800-207

National Institute of Standards and Technology. (2022). Implementation of DevSecOps for a

Microservices-based Application with Service Mesh. (Department of Commerce D.C.),

Special Publication 800-204C. https://doi.org/10.6028/NIST.SP.800-204C

National Institute of Standards and Technology. (2022). Secure Software Development

Framework (SSDF) Version 1.1. (Department of Commerce D.C.), Special Publication

800-218. https://doi.org/10.6028/NIST.SP.800-218

National Institute of Standards and Technology. (2023). Glossary. National Institute of

Standards and Technology. https://csrc.nist.gov/glossary/term/infrastructure_as_code

OWASP. (n.d.). OWASP Cloud-Native Application Security Top 10. https://owasp.org/www-

project-cloud-native-application-security-top-10/

OWASP. (2021). Application Security Verification Standard 4.0.3. OWASP.

https://github.com/OWASP/ASVS/raw/v4.0.3/4.0/OWASP%20Application%20Security%

20Verification%20Standard%204.0.3-en.pdf

ND-ISAC Publication

ND-ISAC How to protect cloud-native applications 50

Rapid7. (2021). The 2021 Vulnerability Intelligence Report.

https://www.rapid7.com/products/insightvm/vulnerability-report-hub-page/

Saraswathi, R. (2020, January 6). Four Architecture Choices for Application Development.

https://www.ibm.com/cloud/blog/four-architecture-choices-for-application-

development

Valdes, A. (2021, April 20). The best Infrastructure as Code tools for 2022. [Digital Image].

https://www.clickittech.com/devops/infrastructure-as-code-tools/

Wallgren, A. (2017, March 17). Are you Actually Doing DevOps?. DevOpsDigest.

https://devopsdigest.com/are-you-actually-doing-devops

	About the Authors
	Executive Summary
	Introduction
	Objective
	Audience
	Structure of the paper

	How to protect cloud-native applications?
	Cloud Architecture Overview for Applications
	Shared Responsibility Model
	Types of Implementations
	Microservices
	Zero Trust

	OWASP Top 10 Cloud-native Risks
	DevSecOps Security Concerns
	Security controls available to protect cloud-native apps
	Security Standardization
	Security Automation

	Conclusion
	References

